Development of an Interactive Self-Teaching Package in Failure Analysis

M Neil James and David J Grieve

Department of Mechanical & Marine Engineering
University of Plymouth
Drake Circus, Plymouth PL4 8AA
Email: mjames@plymouth.ac.uk
Outline

Talk will address:

- Background to development – drivers in choosing the interactive internet route
- Format chosen for the package
- Interactive elements – what can they do?
- Demonstration of package
Background

Author's experience:

- Applied engineering best assimilated in laboratory setting
- Particularly true for analytical skills in the synthesis of mechanical properties and metallurgy/materials science
 - Failure analysis and fractography
 - Design for fatigue and fracture
- Subtle interactions between composition, processing, structure and properties need laboratory case study development
Background

Author's experience:

- Want to develop expertise in
 - Mechanical property testing
 - Use of optical microscope and SEM
 - Metallographic interpretation
 - Fractography
- Difficult to do except in laboratory-intensive modules
- Availability of such resources diminishing due to cost, staff shortages, timetable constraints, larger cohorts
Background

Drivers:

• Industrial failure case studies highly successful
 ➢ Raise students interest and link disparate modules
 ➢ Ground modules firmly in practice of 'real' engineering
 ➢ Introduce 'social consciousness' aspects
 ✓ Ethics & litigation
 ✓ Legal responsibility & culpability
 ✓ Insurance & loss adjusting
 ➢ Team experience
Background

Rationale for interactive case studies:

- Achieve aspects of the ‘reflective practitioner’ in engineering failure analysis
- Improve core specialist knowledge in the field of materials and failure
- Key aim to promote student motivation
 - Illustrate breadth of engineering practice and failure
 - Promote depth in analytical skills
 - Available in 'digestive' packet sizes over internet
Format of package

• Internet-based
 ➢ Multimedia capability
 ➢ Hyperlinks to focussed high-level resources
 ➢ 24/7 access
• Easy navigation
 ➢ Size not a daunting issue
 ➢ Choice of entry points
• Each case study is 'stand-alone'
• Powerful associated resources in fractography and metallography
Format of package

- Introductory front page states learning from each case
- Navigation for whole case study laid out
- Case studies partitioned into stages of real solution
- Interactive elements:
 - Allow reflection on critical synthesis
 - Introduce engineering estimation techniques
Interactive elements

• Example – fracture stress of undercarriage brackets: give theory/information + test learning

\[
K_I = \sqrt{\frac{m}{\pi}}
\]

\[
C = \left[C_0 \cdot \left(\frac{a}{w} \right)^4 \cdot \left(\frac{2c}{B} \right)^2 \right] C_1
\]

\[
C_0 = 1.13 - 0.06 \left(\frac{a}{w} \right)
\]

\[
C_1 = -0.54 + 0.95 \left(\frac{2c}{B} \right)
\]

\[
C_2 = 0.5 \left(\frac{10}{0.47 - \left(\frac{a}{w} \right)^3} \right) - 10 \left(1 - \left(\frac{a}{w} \right)^3 \right) C_1
\]

\[
C_3 = 1 + 0.1 \left(\frac{2c}{B} \right)
\]
Interactive elements

- Example – fracture stress of undercarriage brackets:- allow sensitivity analysis

<table>
<thead>
<tr>
<th>Inputs</th>
<th>History</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2c</td>
<td>a</td>
<td>B</td>
<td>W</td>
<td>KJ</td>
<td>Critical stress</td>
<td></td>
</tr>
<tr>
<td>crack length, 2c</td>
<td>18.0</td>
<td>2.0</td>
<td>7.0</td>
<td>38.0</td>
<td>110.0</td>
<td>1057.88</td>
<td></td>
</tr>
<tr>
<td>crack depth, a</td>
<td>18.0</td>
<td>2.0</td>
<td>7.0</td>
<td>38.0</td>
<td>110.0</td>
<td>836.69</td>
<td></td>
</tr>
<tr>
<td>thickness, B</td>
<td>10.0</td>
<td>1.0</td>
<td>7.0</td>
<td>38.0</td>
<td>110.0</td>
<td>903.97</td>
<td></td>
</tr>
<tr>
<td>component length, W</td>
<td>10.0</td>
<td>1.0</td>
<td>7.0</td>
<td>38.0</td>
<td>110.0</td>
<td>786.80</td>
<td></td>
</tr>
<tr>
<td>frac. toughness</td>
<td>2.5</td>
<td>2.0</td>
<td>7.0</td>
<td>38.0</td>
<td>110.0</td>
<td>456.69</td>
<td></td>
</tr>
<tr>
<td>compute</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>736.90</td>
<td></td>
</tr>
</tbody>
</table>
Demonstration

• Package hyperlinked below:
 Run Interactive Failure Package