Preface

The Science Learning and Teaching Conference 2005 is the first UK national conference designed to bring together practitioners in the teaching of science disciplines in higher education to share their experiences, identify common challenges and to provide an opportunity to share effective (and innovative) practice. The papers published in this volume demonstrate the scale of success of this venture.

At a time when the emphasis given to teaching and learning in UK Universities has never been greater, and the number of students in higher education is at an all-time high, it is timely to initiate what the organisers hope will become a regular feature of the science education calendar.

The organisation of a conference such as this takes the efforts of many people. When three Subject Centres are involved the liaison and coordination work is hugely important. Without naming individuals, I would like to thank the organising committee, the referees, our administrative teams and of course the delegates who will, on the day, provide the spice which turns a set of papers into a conference.

Peter Goodhew
Chair of the organising committee
Organizing Committee

CONFERENCE CHAIR
Professor Peter Goodhew
Centre Director
The Higher Education Academy UK Centre for Materials Education

MEMBERS OF THE COMMITTEE
The Higher Education Academy Centre for Bioscience

Trish Walker
Centre Manager

Dr Steve Maw
Subject Specialist

Dr Jackie Wilson
Subject Specialist
The Higher Education Academy UK Centre for Materials Education

Dr Matt Murphy
Centre Manager
The Higher Education Academy Physical Sciences Centre

Dr Tina Overton
Centre Director

CONFERENCE SECRETARIAT
Dr Katherine Clark
Associate Subject Specialist
The Higher Education Academy Centre for Bioscience

Susan Doyle
Centre Co-ordinator
The Higher Education Academy UK Centre for Materials Education

Katie Glover
Centre Administrator
The Higher Education Academy Physical Sciences Centre

Paul Chin
Centre Manager
Contents

O = Oral Presentation W = Workshop P = Poster

1.1 e-Learning

O1. Using an audience response system in lectures 11
 Darrell Brooks

O2. Using e-learning to promote peer learning and assessment 15
 Paul Chin

O3. Virtual experiments across the science curriculum 20
 Philip Butcher

O4. Development of an e-learning resource in support of large class size teaching the biosciences 23
 Momna V. Hejmadi

O5. e-learning: setting up a diploma in applied chemistry through the university’s virtual campus 28
 Hazel J. Wilkins

1.2 Maths

O6. Supporting maths and physics through the PPLATO resources 33
 Mike Tinker

O7. Learning and teaching via online maths tests 35
 Mundeep Gill and Martin Greenhow

O8. Mathktutor: supporting students in learning mathematics 40
 Jim Stevenson

O9. Counting on numbers – squaring the numeracy divide 46
 Adam Watts
1.3 Short Papers

O10. The ‘poor Raymond’ investigation: a team work exercise to inspire new students
Patrick Bailey

O11. Self and peer assessment: a role for learning in higher education
Paul Orsmond

O12. Use of a sci-art project to explore the benefits of interdisciplinary collaboration
Maureen Dawson

O13. Just in time teaching: a structure blended learning model for science and skills
Jacqueline Potter

O14. First and final year courses in undergraduate biosciences as teaching-learning environments
Dai Hounsell

1.4 Assessment 1

O15. Headlines from the FAST project – assessment for effective learning
Stephen Swithinby

O16. Headlines for the OLAAF project – effective computer-based assessment
Richard Rayne

O17. Headlines from the EFEL project – enhanced learning through target setting
Colin Hughes

2.1 Workshops

W1. The physics and chemistry boxes
Ashley Clarke and Steve Walker

W2. Engaging with the ethical implications of science
Chris Willmott

W3. The Midwich Cuckoos revisited: promoting learning through peer group work
Bill Byers
W4. The best of both worlds? Experiencing research through teaching
Heather Sears

W5. e-learning and disability: tales from the riverbank
(and other non-classroom based learning environments)
Lawrie Phipps

W6. Introduction to problem-based learning
Derek Raine and Sarah Symons – LEAP

2.2 Short Papers

O18. The integration of problem-based learning into a traditional
teaching framework – lessons on mixed economy models of education
Raul Sutton

O19. Student authored questions encouraging a deeper learning in physics
Ken M. McGregor

O20. Responding to changes in pre-entry qualifications
Anthony Cook

O21. Distance education in elementary physics without
face-to-face sessions: the design of problem-solving
and laboratory content for a web-based course
J.L. Hunt

2.3 Assessment 2

O22. Novel pedagogic and IT approaches to the academic assessment
of workplace learning
Stephen Gomez

O23. Assessment of practical skills – ‘I do and I learn’
Peter Klappa

O24. Formative assessment feedback in pharmacology –
encouraging engagement
Iain Coleman

2.4 Short Papers

O25. Enhancing the development of experimental design skills in life
science undergraduates: the link between confidence and engagement
Jane Mackenzie
O26. Physics education research and UK physics; tensions and possible remedies 138
 David Sands

O27. LeAP interaction: towards curriculum change in HE 145
 Sarah Symons, LeAP

O28. Industry-supported context-based chemistry practicals 149
 David J. McGarvey

Posters

P1. Development of an interactive online alternative to a laboratory-based 153
 demonstration in the module: food microbiology
 Hazel Gibson, J. T. Walton and Matthew Hammerton

P2. What’s a CETL all about? 155
 Karen Moss

P3. Epistemology teaching and assessment in physics 157
 David Sands

P4. Developing enterprise skills in undergraduate physicists 160
 Marek Szablewski

P5. To Flash or not to Flash – The use of Macromedia Flash as an 161
 effective tool for the production of e-learning materials in higher education
 Matthew Hammerton

P6. Getting started with Macromedia Flash 164
 Ray Wallace

P7. Plagiarism: do students know what it is? 166
 Maureen Dawson and Joyce Overfield

P8. The Resource Discover Network (RDN): using the best of the 168
 web in teaching and learning
 John Blunden-Ellis

P9. Use of PharmaCALogy software in a problem based 171
 learning programme to teach pharmacology for extended and
 supplementary nurse prescribing
 Iain Coleman and Adam Watts

P10. A good big ’un. . . : adaptive technology and scientific software 174
 Nick Musgrove and Richard Homfray

P11. Activity diary program to enhance teaching of energy balance 176
 A. Wise and E. Cowie
<table>
<thead>
<tr>
<th>Paper Number</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>P12</td>
<td>Digital alternatives and disability in science education</td>
<td>Lawrie Phipps</td>
<td>178</td>
</tr>
<tr>
<td>P14</td>
<td>Chemistry: the next generation: a multi-dimensional Aimhigher project tackling under representation in the chemical sciences in HE</td>
<td>Kate Burrell and P. M. Cullis</td>
<td>182</td>
</tr>
<tr>
<td>P15</td>
<td>Using real-world forms to focus on undergraduate learning</td>
<td>Duncan Reavey</td>
<td>184</td>
</tr>
<tr>
<td>P16</td>
<td>RRICE: recruitment and retention in a chemical environment</td>
<td>Sue Armstrong and Beth Paschke</td>
<td>187</td>
</tr>
<tr>
<td>P17</td>
<td>Written feedback – is there any point?</td>
<td>Chris Glover and Evelyn Brown – FAST</td>
<td>190</td>
</tr>
<tr>
<td>P18</td>
<td>Improving learning and assessment with confidence-based marking</td>
<td>Tony Gardner-Medwin</td>
<td>192</td>
</tr>
<tr>
<td>P19</td>
<td>Distance education in elementary physics without face-to-face sessions: the design of problem-solving and laboratory content for a web-based course</td>
<td>J. L. Hunt</td>
<td>194</td>
</tr>
<tr>
<td>P20</td>
<td>Using the technology – integrating the learning experiences</td>
<td>Dick Bacon</td>
<td>195</td>
</tr>
<tr>
<td>P21</td>
<td>A virtual institute of interdisciplinary innovation</td>
<td>Tania Burchell – LEAP</td>
<td>198</td>
</tr>
<tr>
<td>P22</td>
<td>Student perceptions of computer-based formative assessments in a semi-distance module</td>
<td>Richard Rayne and Glenn Baggott</td>
<td>200</td>
</tr>
<tr>
<td>P24</td>
<td>On-line delivery of foundation degrees in land-based subjects</td>
<td>P.J. Lumsden and J. Youngs</td>
<td>203</td>
</tr>
</tbody>
</table>
P26. Replacing a formal examination question with a problem-based assignment: effect on student learning
John Green

P27. Teaching problem solving in biochemistry: a blended learning approach featuring computer-based formative assessment
Les Jervis and Loretta Jervis – presented by Richard Rayne, OLAAF

P28. Computer-assisted and Computer-based testing to assess procedural and conceptual knowledge in bioscience undergraduates
Richard Rayne and Glenn Baggott – OLAAF